Open‑YOLO 3D replaces costly SAM/CLIP steps with 2D detection, LG label‑maps, and parallelized visibility, enabling fast and accurate 3D OV segmentation.Open‑YOLO 3D replaces costly SAM/CLIP steps with 2D detection, LG label‑maps, and parallelized visibility, enabling fast and accurate 3D OV segmentation.

Drop the Heavyweights: YOLO‑Based 3D Segmentation Outpaces SAM/CLIP

Abstract and 1 Introduction

  1. Related works
  2. Preliminaries
  3. Method: Open-YOLO 3D
  4. Experiments
  5. Conclusion and References

A. Appendix

3 Preliminaries

Problem formulation: 3D instance segmentation aims at segmenting individual objects within a 3D scene and assigning one class label to each segmented object. In the open-vocabulary (OV) setting, the class label can belong to previously known classes in the training set as well as new class labels. To this end, let P denote a 3D reconstructed point cloud scene, where a sequence of RGB-D images was used for the reconstruction. We denote the RGB image frames as I along with their corresponding depth frames D. Similar to recent methods [35, 42, 34], we assume that the poses and camera parameters are available for the input 3D scene.

\

3.1 Baseline Open-Vocabulary 3D Instance Segmentation

We base our approach on OpenMask3D [42], which is the first method that performs open-vocabulary 3D instance segmentation in a zero-shot manner. OpenMask3D has two main modules: a class-agnostic mask proposal head, and a mask-feature computation module. The class-agnostic mask proposal head uses a transformer-based pre-trained 3D instance segmentation model [39] to predict a binary mask for each object in the point cloud. The mask-feature computation module first generates 2D segmentation masks by projecting 3D masks into views in which the 3D instances are highly visible, and refines them using the SAM [23] model. A pre-trained CLIP vision-language model [55] is then used to generate image embeddings for the 2D segmentation masks. The embeddings are then aggregated across all the 2D frames to generate a 3D mask-feature representation.

\ Limitations: OpenMask3D makes use of the advancements in 2D segmentation (SAM) and vision-language models (CLIP) to generate and aggregate 2D feature representations, enabling the querying of instances according to open-vocabulary concepts. However, this approach suffers from a high computation burden leading to slow inference times, with a processing time of 5-10 minutes per scene. The computation burden mainly originates from two sub-tasks: the 2D segmentation of the large number of objects from the various 2D views, and the 3D feature aggregation based on the object visibility. We next introduce our proposed method which aims at reducing the computation burden and improving the task accuracy.

\

4 Method: Open-YOLO 3D

Motivation: We here present our proposed 3D open-vocabulary instance segmentation method, Open-YOLO 3D, which aims at generating 3D instance predictions in an efficient strategy. Our proposed method introduces efficient and improved modules at the task level as well as the data level. Task Level: Unlike OpenMask3D, which generates segmentations of the projected 3D masks, we pursue a more efficient approach by relying on 2D object detection. Since the end target is to generate labels for the 3D masks, the increased computation from the 2D segmentation task is not necessary. Data Level: OpenMask3D computes the 3D mask visibility in 2D frames by iteratively counting visible points for each mask across all frames. This approach is time-consuming, and we propose an alternative approach to compute the 3D mask visibility within all frames at once.

\

4.1 Overall Architecture

\

4.2 3D Object Proposal

\

4.3 Low Granularity (LG) Label-Maps

\

4.4 Accelerated Visibility Computation (VAcc)

In order to associate 2D label maps with 3D proposals, we compute the visibility of each 3D mask. To this end, we propose a fast approach that is able to compute 3D mask visibility within frames via tensor operations which are highly parallelizable.

\ Figure 3: Multi-View Prompt Distribution (MVPDist). After creating the LG label maps for all frames, we select the top-k label maps based on the 2D projection of the 3D proposal. Using the (x, y) coordinates of the 2D projection, we choose the labels from the LG label maps to generate the MVPDist. This distribution predicts the ID of the text prompt with the highest probability.

\

\

\

4.5 Multi-View Prompt Distribution (MVPDist)

\ Table 1: State-of-the-art comparison on ScanNet200 validation set. We use Mask3D trained on the ScanNet200 training set to generate class-agnostic mask proposals. Our method demonstrates better performance compared to those that generate 3D proposals by fusing 2D masks and proposals from a 3D network (highlighted in gray in the table). It outperforms state-of-the-art methods by a wide margin under the same conditions using only proposals from a 3D network.

\

4.6 Instance Prediction Confidence Score

\

:::info Authors:

(1) Mohamed El Amine Boudjoghra, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) (mohamed.boudjoghra@mbzuai.ac.ae);

(2) Angela Dai, Technical University of Munich (TUM) (angela.dai@tum.de);

(3) Jean Lahoud, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) ( jean.lahoud@mbzuai.ac.ae);

(4) Hisham Cholakkal, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) (hisham.cholakkal@mbzuai.ac.ae);

(5) Rao Muhammad Anwer, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) and Aalto University (rao.anwer@mbzuai.ac.ae);

(6) Salman Khan, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) and Australian National University (salman.khan@mbzuai.ac.ae);

(7) Fahad Shahbaz Khan, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) and Australian National University (fahad.khan@mbzuai.ac.ae).

:::


:::info This paper is available on arxiv under CC BY-NC-SA 4.0 Deed (Attribution-Noncommercial-Sharelike 4.0 International) license.

:::

\

Market Opportunity
YOLO Logo
YOLO Price(YOLO)
$0.000000006698
$0.000000006698$0.000000006698
0.00%
USD
YOLO (YOLO) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Sberbank explores crypto-backed loans as Russia softens stance on digital assets

Sberbank explores crypto-backed loans as Russia softens stance on digital assets

Russian financial services giant Sberbank may soon start offering loans secured by cryptocurrency, one of its top executives unveiled.         The news comes right
Share
Cryptopolitan2025/12/25 23:38
Ripple CEO Celebrates New Marriage with Emotional Message

Ripple CEO Celebrates New Marriage with Emotional Message

The post Ripple CEO Celebrates New Marriage with Emotional Message appeared on BitcoinEthereumNews.com. Ripple CEO Brad Garlinghouse has taken to the X social media network to post about his lavish wedding, sharing a picture of himself and his bride, Tara Milsti. “This next chapter of life is so much sweeter with you,” Garlinghouse said on social media.  I feel so lucky for so many reasons — and marrying Tara this past weekend takes the cake! This next chapter of life is so much sweeter with you. ❤️ pic.twitter.com/TzQL3X2YEP — Brad Garlinghouse (@bgarlinghouse) September 22, 2025 Milsti, a certified dietitian nutritionist, is seen wearing a strapless white wedding dress in the picture alongside a sheer white veil and a diamond necklace.  French Riviera luxury  According to a recent report by The Daily Mail, the couple celebrated their wedding at Hotel du Cap-Eden-Roc in Antibes, a historic resort town on the French Riviera.  The extremely luxurious hotel, which features rooms designed with traditional French-Victorian decor, offers suites that might cost more than €5,100 per night.  You Might Also Like Hotel du Cap-Eden-Roc has hosted a slew of A-listers, including Madonna. A-list stars The list of wedding guests included such Hollywood celebrities as Nina Dobrev (“The Vampire Diaries”), Zac Efron (“17 Again” and “Baywatch”), as well as Miles Teller (“Whiplash” and “Top Gun: Maverick”), and Chace Crawford (“Gossip Girl”).  Chris Martin from Coldplay performed during the highly luxurious wedding.  Garlinghouse’s previous marriage  Garlinghouse was previously married to Kristen Elizabeth Mautner, a highly accomplished lacrosse player and Princeton University graduate, with whom he has three children. They married in 1998 when both were business development managers.  Source: https://u.today/ripple-ceo-celebrates-new-marriage-with-emotional-message
Share
BitcoinEthereumNews2025/09/23 15:32
Understanding the Construction Industry Scheme

Understanding the Construction Industry Scheme

The Construction Industry Scheme, commonly known as CIS, is a tax system used in the UK construction sector. It sets out how payments made by contractors to subcontractors
Share
Techbullion2025/12/25 23:53