TLDR Privacy coins like Zcash and Monero surged in 2025, with ZEC up over 711% in three months after Naval Ravikant’s influential post calling it “insurance againstTLDR Privacy coins like Zcash and Monero surged in 2025, with ZEC up over 711% in three months after Naval Ravikant’s influential post calling it “insurance against

How Privacy Became Crypto’s Hottest Investment Narrative in 2025

TLDR

  • Privacy coins like Zcash and Monero surged in 2025, with ZEC up over 711% in three months after Naval Ravikant’s influential post calling it “insurance against Bitcoin”
  • Major crypto investors including a16z Crypto and Coinbase Ventures named privacy as a key focus area for 2026, with a16z calling it “the most important moat in crypto”
  • Regulatory pressure forced exchanges to delist privacy coins over AML/KYC concerns, but demand increased as users sought protection from surveillance and capital controls
  • Zcash’s optional privacy features make it more compliance-friendly than Monero’s mandatory encryption, attracting institutional investors and regulated exchanges
  • Emerging markets drive 81% of privacy asset trading volume as users bypass capital controls, while early privacy coins struggled with usability and lack of programmability

The crypto market saw a sharp increase in privacy coin prices during 2025. Zcash jumped more than 711% over three months following a post from entrepreneur Naval Ravikant.

Monero also gained traction as the narrative spread. Both coins are the largest privacy tokens by market cap. Other privacy-focused tokens followed the same upward trend.

Major venture capital firms shifted their focus toward privacy. a16z Crypto called privacy “the most important moat in crypto” for 2026. Coinbase Ventures also listed privacy as a core investment area. Investor Balaji Srinivasan said the next eight years of crypto will center on privacy.

The renewed interest comes from practical concerns. As more financial activity moves to blockchain networks, users worry about exposing their positions. Jonathan King from Coinbase Ventures said institutional players and serious traders cannot operate when their strategies are visible. Most users do not want their complete financial history on public ledgers.

Rand Hindi, co-founder of privacy protocol Zama, said traditional finance will not use public blockchains without strong privacy features. Nick Tang from Finality Capital Partners agreed. He said privacy will become required for institutional adoption.

Regulatory Challenges Split the Market

Major exchanges delisted privacy coins in 2025 due to anti-money laundering and know-your-customer rules. Monero faces the biggest challenges because it requires privacy by default. Regulators in many countries demand transaction transparency.

Zcash took a different approach with optional privacy features. Users can choose between transparent and shielded transactions. This flexibility made Zcash more acceptable to regulated exchanges and institutional investors. The coin also has partnerships with firms like Grayscale.

Despite delistings, demand for privacy coins increased. Jonathan King from Coinbase Ventures said privacy and compliance are not opposites. He expects clearer rules that allow privacy systems to work within legal frameworks.

Pim Swart from Maven11 noted that early privacy coins carried stigma. They were linked to money laundering and regulatory evasion. Most users were not willing to accept extra costs or perceived risks. But attitudes are changing as surveillance concerns grow.

Emerging Markets Drive Adoption

Emerging markets account for 81% of privacy asset trading volume in late 2025. Users in these regions face capital controls and high transaction costs. Privacy coins offer a way to move money without government restrictions.

Boris Revsin from Tribe Capital said privacy alone is not enough. It needs to work as well as existing payment systems. He said a major data breach in crypto could push privacy into mainstream use. He compared it to the 2018 Cambridge Analytica scandal.

Some investors disagreed about user priorities. Anirudh Pai from Robot Ventures said the Cambridge Analytica scandal showed users do not care much about data sharing. Meta continued to post strong earnings after the incident. But he agreed privacy must be built into useful products rather than sold as a standalone feature.

Early privacy platforms struggled with technical limits. They lacked programmability and could not support complex applications. Rand Hindi said users want confidential smart contracts, not just privacy coins. He estimates private payments and stablecoins represent a $10 trillion market. Asset management could reach $100 trillion over time.

Technical Progress and Cost Concerns

User experience remains a major barrier. Private transactions must be as simple and cheap as public ones. Nick Tang said most users will not pay extra for privacy if cheaper options exist. He expects institutions and power users to adopt privacy features first.

The technology is improving. New platforms like Lighter, a ZK rollup exchange, and Payy, a private crypto card, build privacy into their core design. They do not market privacy as the main feature. Instead, it works in the background while delivering standard services.

Lex Sokolin from Generative Ventures pointed out security risks in older privacy coins. Some are vulnerable to 51% attacks due to limited utility and small networks. Newer systems aim to solve these problems with better infrastructure.

Regulatory uncertainty remains the biggest risk. Founders must design systems that can adapt to changing rules. Rand Hindi said privacy projects need to work within whatever requirements traditional finance demands.

Zcash gained 652% year-to-date while Monero rose 93%. Both outperformed Bitcoin and Ethereum. The performance shows growing interest in financial tools that resist surveillance and inflation. Privacy moved from a niche concern to a mainstream discussion in the crypto industry during 2025.

The post How Privacy Became Crypto’s Hottest Investment Narrative in 2025 appeared first on CoinCentral.

Market Opportunity
Wink Logo
Wink Price(LIKE)
$0.004342
$0.004342$0.004342
+10.31%
USD
Wink (LIKE) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

South Korea Launches Innovative Stablecoin Initiative

South Korea Launches Innovative Stablecoin Initiative

The post South Korea Launches Innovative Stablecoin Initiative appeared on BitcoinEthereumNews.com. South Korea has witnessed a pivotal development in its cryptocurrency landscape with BDACS introducing the nation’s first won-backed stablecoin, KRW1, built on the Avalanche network. This stablecoin is anchored by won assets stored at Woori Bank in a 1:1 ratio, ensuring high security. Continue Reading:South Korea Launches Innovative Stablecoin Initiative Source: https://en.bitcoinhaber.net/south-korea-launches-innovative-stablecoin-initiative
Share
BitcoinEthereumNews2025/09/18 17:54
Trump Cancels Tech, AI Trade Negotiations With The UK

Trump Cancels Tech, AI Trade Negotiations With The UK

The US pauses a $41B UK tech and AI deal as trade talks stall, with disputes over food standards, market access, and rules abroad.   The US has frozen a major tech
Share
LiveBitcoinNews2025/12/17 01:00
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40